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By means of an extended tanh approach, new types of variable separated solutions u, v, w with two
arbitrary lower-dimensional functions of the (2+1)-dimensional general Sasa-Satsuma (GSS) system
are derived. Based on the derived variable separation excitation, abundant localized structures such
as dromion, peakon and foldon are revealed by selecting appropriate functions p and q. Finally, some
elastic and nonelastic interactions among special folded solitary waves are investigated both analyt-
ically and graphically. The explicit phase shifts for all the local excitations offered by the common
formula are given and applied to these interactions in detail. – PACS numbers: 01.55.+b; 02.30.Jr.
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1. Introduction

Due to the wide applications of soliton theory in
mathematics, physics, chemistry, biology, communi-
cations, astrophysics and geophysics, the study of in-
tegrable models has attracted much attention of many
mathematicians and physicists. To find some exact ex-
plicit soliton solutions for integrable models is one
of the most important and significant tasks. There
has been a great amount of activities aiming to find
methods for the exact solution of nonlinear differen-
tial equations. Such include the Bäcklund transforma-
tion [1], Darboux transformation [2], Cole-Hopf trans-
formation [3], various tanh methods [4], various Jacobi
elliptic function methods [5, 6], multi-linear variable
separation approach [7, 8], Painlevé method [9], ho-
mogeneous balance method [10], similarity reduction
method [11] and so on.

For a given nonlinear evolution equation

Λ(U,Ut ,Uxi ,Uxix j , . . .) = 0 (1)

with independent variables, ς = (t,x1,x2, . . . ,xm), and
a dependent variable, U , we seek its solutions in the
form

U =
n

∑
i=0

αi(ς)φ i(ω(ς)), ω(ς) =
m

∑
i=0

gixi. (2)

Using the ansatz (2), one can obtain many explicit
and exact travelling wave solutions of nonlinear evo-
lution equation. The main idea of the approach is, that
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φ(ω(ς)) is assumed to be a solution of some equa-
tion, such as the cubic nonlinear Klein-Gordon equa-
tion (φ ′2 = α4φ4 +α2φ2 +α0), or a solution of the gen-
eral elliptic equation (φ ′2 = ∑4

i=0 αiφ i), where αi, i ∈
(1,2,3,4) are all arbitrary constants.

In the extended tanh approach [12, 13], φ(ω(ς)) is
assumed to be a solution of equation

φ ′2 = α0 + φ2. (3)

In contrast to (2), here ω(ς) is not a simple linear com-
bination of variables xi, but assumed to be a function
with the variable separated form

ω(ς) = ς1(x1, t)+ ς2(x2, t)+ ς3(x3, t)+ . . . , (4)

where ςi are arbitrary functions of the indicated vari-
ables.

To determine U explicitly, one may take the fol-
lowing steps: First, similar to the usual tanh approach,
determine n by balancing the highest-order nonlinear
term(s) and the highest-order partial derivative term(s)
in the given nonlinear evolution equation. Second, sub-
stitute (2) and (3) into the given equation and collect
the coefficients of polynomials of φ , then eliminate
each coefficient to derive a set of partial differential
equations of αi (i = 0,1, . . . ,n) and ω . Third, solve
the system of partial differential equations to obtain αi
and ω . Finally, as (3) with α0 = 0 possesses the solu-
tion

φ = − 1
ω

, (5)
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substituting αi, ω and (5) into (2), one can obtain the
solution of the equation in concern.

In this paper, with the help of the extended tanh
approach we get variable separated solutions for the
(2+1)-dimensional general Sasa-Satsuma (GSS) sys-
tem. Then necessary and sufficient conditions for the
selections of the arbitrary functions appearing in the
field formula for the completely or noncompletely
elastic interaction will be given.

Among others, the solving process here is differ-
ent from the multi-linear variable separated approach
first put forward by Lou [7]. As we know, the multi-
linear variable separated approach has been widely dis-
cussed in some previous literature. With the help of
a Painlevé-Bäcklund transformation and multi-linear
variable separated approach, one can find some char-
acteristic types of localized excitations. Certainly, we
also can come to the same conclusion by applying the
multi-linear variable separated approach.

2. Variable Separated Solution for the
GSS System

The (2+1)-dimensional GSS system is

wt + wxxx + 6wxu + 3wux = 0,

vt + vxxx + 6vxu + 3vux = 0, uy = (wv)x.
(6)

Realizing the importance of the GSS system in de-
scribing the propagation of ultra-short pulses through
fibres, several attempts have been made to find soliton
solutions of the GSS system by various methods like
Hirota’s bilinear method, Painlevé analysis, Bäcklund
transformation and inverse scattering technique. The
authors of [14] analyzed the singularity structure as-
pects of this system and confirmed its integrability, us-
ing the results of the Painlevé analysis. The new class
of solutions includes multiple conoidal periodic waves
driven by doubly periodic Jacobian elliptic functions
and multiple dromions. They have also explored the
concept of fission and fusion of dromions in detail.

Along with the extended tanh method, we assume
that the system (6) possesses solutions of the form

u(x,y, t) =
l

∑
i=0

aiφ i(ω), v(x,y,t) =
m

∑
j=0

b jφ j(ω),

w(x,y, t) =
n

∑
k=0

ckφ k(ω),
(7)

where φ satisfies

φ ′2 = φ2. (8)

Here ω ≡ ω(x,y, t), ai ≡ ai(x,y, t) (i = 0,1, . . . , l),
b j ≡ b j(x,y, t) ( j = 0,1, . . . ,m) and ck ≡ ck(x,y, t) (k =
0,1, . . . ,n) are functions to be determined later. By bal-
ancing the highest-order derivative terms with the non-
linear terms in system (6), we obtain l = 2, m = n = 1.
Then we have

u(x,y, t) = a1(x,y, t)φ(ω)+ a2(x,y, t)φ(ω)2,

v(x,y, t) = b1(x,y, t)φ(ω),
w(x,y, t) = c1(x,y, t)φ(ω).

(9)

Inserting (8) and (9) into (6), selecting the variable sep-
arated ansatz

ω = p(x, t)+ q(y, t), (10)

and eliminating all the coefficients of polynomials
of φ , one gets a set of partial differential equations

6c1 px(2a2 + p2
x) = 0,

(6a2 + 6p2
x)c1x +(6pxpxx + 3a2x + 9pxa1)c1

+ 6c0a2 px = 0,

(6a1 + 3pxx)c1x +(3a2x + 3pxa1)c0

+ (pxxx + qt + 6pxa0 + pt + 3a1x)c1

+ 6c0xa2 + 3c1xx px = 0,

6c0xa1 +c1t +c1xxx +3c0a1x +3c1a0x +6c1xa0 = 0,

c0xxx + 3c0a0x + 6c0xa0 + c0t = 0,

6b1 px(2a2 + p2
x) = 0,

(6a2 + 6p2
x)b1x +(6pxpxx + 3a2x + 9pxa1)b1

+ 6b0a2 px = 0,

(6a1 + 3pxx)b1x +(3a2x + 3pxa1)b0

+ (pxxx + qt + 6pxa0 + pt + 3a1x)b1

+ 3b1xx px + 6b0xa2 = 0,

6b1xa0 +3b0a1x +b1t +6b0xa1 +3b1a0x +b1xxx = 0,

3b0a0x + b0xxx + b0t + 6b0xa0 = 0,

2(a2qy − c1 pxb1) = 0,

−c1xb1−c1 pxb0 +a1qy +a2y−c0b1 px−c1b1x = 0,

−c0xb1 − c0b1x + a1y − c1b0x − c1xb0

= 0a0y − c0xb0 − c0b0x = 0.
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We obtain the following expressions for the coeffi-
cients:

a2 = −1
2
(px)2, b1 = −1

2

√pxqy

λ
,

c1 = λ√pxqy, a0 =
3p2

xx −4pxpxxx −4pxpt

24p2
x

,

c0 = 0, b0 = 0, a1 = −1
2

pxx, q = q(y),

λ = λ (y) or λ ≡ constant.

(11)

Consequently, the exact variable separated solution of
the GSS system (6) has the form

u =
−3p2

xx + 4pxpxxx + 4pxpt

24p2
x

+
pxx

2(p + q)

+
p2

x

2(p + q)2 ,

(12)

w = −2λ 2v = −λ
√pxqy

p + q
, (13)

where p ≡ p(x,t) and q ≡ q(y) are arbitrary functions
of the indicated variables, λ ≡ λ (y) is an arbitrary
function of y which also may be a constant. Since the
fields w and v for the GSS system are real, we have to
put a constraint:

pxqy ≥ 0. (14)

Obviously, because p(x,t) and q(y) are arbitrary
functions, we can set them as

p(x, t) = χ(x)+ τ(t), q(y) = Y (y).

Then one of the special conditions is

ω = p(x,t)+ q(y) = X(x)+ T (t)+Y(y), (15)

where X ≡ X(x), T ≡ T (t) and Y ≡Y (y) are three arbi-
trary functions of x, t and y, respectively. Under these
conditions, the time and space variables are separated
entirely. Then we have

u =
−3X2

xx + 4XxXxxx + 4XxTt

24X2
x

+
Xxx

2(X + T +Y )

+
X2

x

2(X + T +Y )2 ,

w = −2λ 2v = −λ
√

XxYy

X + T +Y
.

(16)

It should be mentioned that the variable separated
result in (13), i. e.

w2(v2) ∝
pxqy

(p + q)2 ,

had also been found for other (2+1)-dimensional mod-
els, such as the Boiti-Leon-Pempinelli system, the
Korteweg-de Vries equation, the dispersive long wave
equation, and the Nizhink-Novikov-Veselov equation.

3. Special Localized Excitations

Because of the arbitrariness of the functions of p
and q, (13) reveals quite abundant soliton structures.
Apart from the traditional nonpropagating localized
excitations like lumps or dromions, many more exci-
tations can be constructed like peakons, compactions,
etc.

For example, when selecting in (13) T =
exp(cos(t)) and p and q to be some piecewise
smooth functions, we can derive some multi-peakon
excitations, i. e.,

p = exp[cos(t)]+
N

∑
i=1

{
Xi(x), x ≤ 0,

−Xi(−x)+ 2Xi(0), x > 0,

q =
M

∑
j=1

{
Yj(y), y ≤ 0,
−Yj(−y)+ 2Yj(0), y > 0,

(17)

where the functions Xi(x) and Yj(y) are differentiable
functions of the indicated arguments and possess the
boundary conditions

Xi(±∞) = A±i, i = 1,2, . . . ,N,

Yj(±∞) = B± j, j = 1,2, . . . ,M,
(18)

with A±i and B± j are constants.
Similarly, if p and q are chosen to be other types of

piecewise smooth functions, then we can derive multi-
compacton excitations, i. e.,

p = exp[cos(t)]

+
N

∑
i=1




0, x ≤ x1i,
Ei(x)−Ei(x1i), x1i < x ≤ x2i,
Ei(x2i)−Ei(x1i), x > x2i,

q =
M

∑
j=1




0, y ≤ y1 j,
Fj(y)−Fj(y1 j), y1 j < y ≤ y2 j,
Fj(y2 j)−Fj(y1 j), y > y2 j,

(19)
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where the functions Ei and Fj are all arbitrary differen-
tiable functions with the conditions

∂Ei

∂x
|x=x1i =

∂Ei

∂x
|x=x2i = 0,

∂Fj

∂y
|y=y1 j =

∂Fj

∂y
|y=y2 j = 0.

(20)

Then the physical fields w and v will become some
higher-dimensional multiple compacton solutions. Ac-
tually, from (13) it is easy to conclude that for arbi-
trary p and q with the boundary conditions

p|x→−∞ → L1, p|x→+∞ → L2,

q|y→−∞ → L3, q|y→+∞ → L4,
(21)

where Li (i = 1,2,3,4) are arbitrary constants, which
may even be infinities, we obtain a coherent soliton so-
lution localized in some or in all directions. The dif-
ferent choices of the arbitrary functions p and q cor-
respond to the different choices of boundary condi-
tions. On the other hand, one could investigate the sta-
bility properties of these solutions and their relevance
as asymptotic states for suitable initial boundary value
problems.

But we can not obtain the ring type of solitons and
lumps from (13) because of the condition pxqy ≥ 0 to
guarantee real values of w and v.

4. Asymptotic Properties of the Localized
Excitations

In this section, we focus our attention on whether
the interactions of these types of localized excitations
are completely elastic. To find the answer, we have to
study the asymptotic properties of the localized excita-
tions.

If the function q is chosen as an arbitrary static func-
tion while p is chosen as a multi-localized solitonic ex-
citation with

p|t→∓∞ =
M

∑
j=1

h∓j ≡ h j(x− v jt + ∆∓
j ), (22)

where h j are localized functions, then the quantities
in (12) and (13) are

u|t→∓∞ → 3h∓2
jxx −4h∓jxh

∓
jxxx −4h∓jxh

∓
jt

24h∓2
jx

− h∓jxx

2(h∓j + H∓
j + q)

− h∓2
jx

2(h∓j + H∓
j + q)2 ,

v|t→∓∞ →
√

h∓jxqy

−2λ (h∓j + H∓
j + q)

,

w|t→∓∞ →
λ

√
h∓jxqy

h∓j + H∓
j + q

. (23)

Here

H∓
j = ∑

i< j
hi(∓∞)+ ∑

i> j
hi(±∞), (24)

and we have assumed, without loss of generality, v j ≥
vi if j ≥ i.

It can be deduced from expression (23) that the lo-
calized excitation preserves its shape during the inter-
action if

H+
j = H−

j . (25)

The phase shift of the j-th localized excitation in the
x-direction reads

∆+
j = ∆−

j . (26)

The above discussion demonstrates that multiple
localized solitonic excitations for the field (13) can
be constructed without difficulties via the (1+1)-
dimensional multiple localized excitations with the
properties (22).

Fortunately, owing to the arbitrariness of the func-
tions in (13), we have constructed not only the single-
valued localized excitations but also quite rich folded
solitary waves, which are so-called loop solitons in
(1+1)-dimensional integrable systems. As a matter of
fact, take px as (1+1)-dimensional localized multi-
valued functions (say loop solitons),

px ≡
M

∑
j=1

h j(ξ −v jt), x = ξ +
M

∑
j=1

g j(ξ −v jt), (27)

and the function q in a similar way,

qy =
M

∑
j=1

Q j(η), y = η + R(η), (28)

where v1 < v2 < .. . < vM are all arbitrary constants
and h j, g j, ∀ j are all localized functions with the prop-
erties

h j(±∞) = H±, g j(±∞) = G± = constant, (29)
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Fig. 1. Plots of px with (a) px = 1 + 0.1sech(ξ ) + 0.2sech(ξ − 9), x = ξ − 3.5tanh2(ξ ) + 8.3tanh2(ξ − 9); (b) px = 1 +
0.1sech2(ξ )+0.2sech2(ξ −9), x = ξ −3.5tanh(ξ )+8.3tanh(ξ −9).

then we have

p =
∫ ξ

pxxξ dξ , q =
∫ η

qyyηdη . (30)

Substituting (27) and (28) with (30) into (13), we can
get folded solitary waves for w(v). As can be con-
cluded from expression (27), ξ may be a multi-valued
function in certain regions of x by selecting the func-
tions g j suitably. Therefore, the function px may be a
multi-valued function of x in these regions though it
is a single-valued function of ξ , see Figure 1. A more
detailed choice of the function is given in the figure
caption. Besides, px is an travelling solution of M lo-
calized excitations due to the property ξ |x→∞ → x→∞.
In this case, the phase factors ∆∓

j read

∆ j(±) = ∑
i< j

G∓
i + ∑

i> j
G±

i . (31)

To construct folded solitary waves with com-
pletely elastic interaction properties for w(v), we
have to discuss its asymptotic properties when t →
±∞. Assuming further that Hj(θ j) ≡ Hj(ξ − v jt) ≡∫

h jdx|θ j→±∞ → H±
j , we can look at the j-th excitation

to see the interaction properties among the localized
excitations expressed by (13), (27) and (28). In other
words, we can consider the θ j as invariant and then
take t → ∞ because q has been fixed as t-independent.

The results read

w2
j = 4λ 4v2

j |t→∓∞ → λ 2 h j(θ j)qy

(Hj(θ j)+ Ω∓
j + q)2 ,

x|t→∓∞ → ξ + ∆∓
j + g j(ξ + v jt),

(32)

where

Ω∓
j = ∑

i> j
H∓

i + ∑
i< j

H±
i ,

∆ j(∓) = ∑
i> j

G∓
i + ∑

i< j
G±

i .
(33)

Only for a special choice of the spectral parameters
these solutions preserve their forms.

5. Examples of the Elastic and Nonelastic
Interactions

Now we plot and discuss two concrete interactions
for the field w with and without completely elastic in-
teraction properties. In order to reveal the phase shift
more clearly and visually, it has proved convenient to
fix one of them possessing zero velocity.

5.1. Nonelastic Interaction of Two-Folded Solitary
Waves of w

For instance, Fig. 2 displays a pre- and post-
interaction plot of the two-folded solitary waves for the
field w expressed by (13) with the choices

px = 0.8sech(ξ )2 + 1.6sech(ξ −0.5t)2,

p =
∫ ξ

pxxξ dξ = {(α + β )(β −1)3(α + 1)3}−1[−1.6α(β −1)3(α −1)(α + β )

−3.2β (α + 1)2(β −1)(αβ 2 + 4αβ + 7α + 1 + β 2 + 10β )+ 19.2β ln
α + β
α + 1

(β + 1)(α + β )(α + 1)3]+ 6;
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Fig. 2. Nonelastic interaction between special folded solitary waves w with conditions (34) at (a) t =−15; (b) t = 0; (c) t = 15.
(d) Corresponding sectional view at y = 0; solid line, dots, circles denote before, in and after collision, respectively.

α ≡ exp(2ξ ), β ≡ exp(t),

x = ξ −2.75tanh(ξ )−1.2tanh(ξ −0.5t),

qy = 0.85sech(η)2,

q =
∫ η

qyyηdη = tanh(ξ )[0.34−0.255sech(ξ )2],

y = η −0.9tanh(η). (34)

From Figs. 2a – c, we conclude that the field w ob-
tained from (34) expresses special two-folded solitary
wave solutions in which the interaction between them
is nonelastic. The total phase shift for the static folded
solitary wave is

∆+
1 −∆−

1 = G2(−∞)−G2(+∞) = 2.4. (35)

Actually, the condition (25) for completely elastic in-
teraction is not satisfied. For the static folded solitary
wave we have

Ω+
1 −Ω−

1 = H2(−∞)−H2(+∞) =−16
25

�= 0, (36)

and for the moving folded solitary wave we obtain

Ω+
2 −Ω−

2 = H1(+∞)−H1(−∞) =−4
3
�= 0. (37)

5.2. Elastic Interaction of Two-Folded Solitary Waves
of w

The interaction property of two-folded solitary
waves is shown in Fig. 3 with the choices

px = 1.3sech(ξ )2 + 0.5sech(ξ − t)2,

p =
∫ ξ

pxxξ dξ

= {(α + β )(β −1)3(α + 1)3}−1

· [−2.6α(β−1)3(α−1)(α+β )−β (α+1)2(β−1)

· (αβ 2 + 4αβ + 7α + 1 + β 2 + 10β )

+ 6β ln
α + β
α + 1

(β + 1)(α + β )(α + 1)3]+ 8;

α ≡ exp(2ξ ), β ≡ exp(2t),

x = ξ −1.5tanh(ξ )−1.5tanh(ξ − t),

qy = 2.8sech(η)2,

q =
∫ η

qyyηdη = −1.4tanh(ξ )sech(ξ )2,

y = η −1.5tanh(η). (38)
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Fig. 3. Elastic interaction between special folded solitary waves w with conditions (38) at (a) t = −5; (b) t = 0; (c) t = 5.
(d) Corresponding sectional view at y = 0; solid line, dots, circles denote before, in and after collision, respectively.

From Figs. 3a – c, we can see that the interaction be-
tween two-folded solitary waves is completely elastic.
This is guaranteed by the completely elastic interaction
property of the (1+1)-dimensional fields p and q. The
conditions (25) in the case are satisfied:

Ω+
1 −Ω−

1 = 0, Ω+
2 −Ω−

2 = 0. (39)

One of the velocities of the two-folded solitary waves
is fixed as zero, which makes it easy to determine their
phase shifts. Clearly before the interaction, the static
folded solitary wave is located at x = −1.5, while after
the interaction, it shifts to x = 1.5. The total phase shift
thus is

∆+
1 −∆−

1 = G2(−∞)−G2(+∞) = 3. (40)

6. Summary

In summary, by means of an extended tanh ap-
proach, the (2+1)-dimensional general Sasa-Satsuma
system was successfully solved. Based on the derived
variable separated solutions with two arbitrary, charac-
teristic, lower-dimensional functions p and q, we have

found rich localized excitations by selecting the arbi-
trary functions appropriately. Especially, some elastic
and nonelastic interactions among the special folded
solitary waves were investigated both analytically and
graphically. The explicit phase shifts for all the local
excitations offered by the common formula have been
given and applied to these interactions in detail. The
different choices of the arbitrary functions p and q
in (27) and (28) corresponded to the different choices
of the boundary conditions of those fields with nonzero
boundary conditions. That means, in some sense, the
dromions, folded solitary waves, and other types of
localized excitations for some physical quantities are
remote-controlled by some other quantities, see Fig-
ure 4. w is a dromion, while u is 3-solitoff with the
same choices

p =
1 + 3exp(x)+ 3exp(e1x)

3 + e2 exp(x)+ e2 exp(e1x)
,

q = exp(y)+ exp(e1y),

e1 =
1
3
, e2 =

1
2
.

(41)

Furthermore, due to the arbitrariness of p and q, we
can construct not only solitons but also chaos, although
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Fig. 4. (a) Dromion for the field; (b) 3-solitoff for the field w.

one usually argues that chaos is the basic behaviour of nonintegrable models. If one of p and q is chosen to be
a localized function while the other one is a chaotic solution of some (1+1)-dimensional [or (0+1)-dimensional]
nonintegrable model – for example, we set p to be the solution of the Lorentz system

pζζζ =
pζζ pζ

p
− (p2 + b(c + 1))pζ − (b + c + 1)pζζ +(b(a−1)− p2)cp, ζ = x + ωt, (42)

where a, b, c are all arbitrary constants – in this case, the localized excitations are chaotic in time and space.
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